Background & Rationale

Adoptive cell therapy with tumor-infiltrating lymphocytes (TILs) has demonstrated promise in clinical trials for patients with solid tumors. Currently, TIL therapy requires IL-2 administration to support TIL expansion and survival, but this cytokine is associated with T cell exhaustion and can result in severe toxicities that limit patient eligibility.

To this end, we genetically engineered TILs to express membrane-bound IL-15 (mIL-15) under the control of Obsidian’s cytoDRIVE® technology (cytoTIL15™), which allows regulation of protein expression via a drug-responsive domain (DRD) upon acetazolamide (ACZ) administration. IL-15 is a preferred cytokine over IL-2 to mediate TIL activation and expansion because it does not result in CD8 T cell exhaustion or stimulation of regulatory CD4 T cells but supports homoeostatic proliferation of memory T cells. We have previously demonstrated IL-15 independent, 3-6-fold increased cytoTIL15 cell persistence in an antigen-independent, in vivo setting relative to unengineered TIL therapy (uTIL) with IL-2.

Since generating autologous tumor/TIL-matched pairs poses multiple challenges, we developed an allogeneic, HLA-matched, patient-derived xenograft (PDX) model which allows antigen-specific comparison of cytoTIL15 anti-tumor efficacy across multiple donors.

Primary melanoma PDX model developed to assess TIL efficacy

- Melanoma biopsied & implanted into NGS mice within 24 hours
- Initial tumor take
 - Sera and passage, tissue- and cryopreserved
- Confirm epithelial histology

PDX tumor expresses conserved melanoma antigens

<table>
<thead>
<tr>
<th>Human melanoma cell line</th>
<th>Melanoma PDX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human melanoma cell line</td>
<td>Melanoma PDX</td>
</tr>
</tbody>
</table>

HLA-matched TIL donors demonstrate reactivity to PDX tumor

- HLA-A/02 selected melanoma TIL donors
- TIL-PDX reactivity assay (IFNγ levels)
- MART1 + gp100 TCR expression

Cells engineered with cytoDRIVE® technology to enable regulation of fusion proteins via drug responsive domains

- PDX Growth Kinetics Study
 - Growth Kinetics: 100 mg tumor
 - Growth Kinetics: 30 mg tumor

Conclusions

- In this report of its kind, these data demonstrate the feasibility of comparing multiple TIL donors in a standardized, allogeneic, HLA-matched PDX tumor efficacy model rather than evaluating each in the traditional autoologous format. Evaluation of three donors in the model showed:
 - Significantly greater anti-tumor activity of ACZ-regulated cytoTIL15 cells compared to TIL plus IL-2, including complete responses.
 - Significantly increased persistence of ACZ-regulated cytoTIL15 cells compared to TIL plus IL-2.
 - Significantly 8-10-fold increased tumor infiltration of regulated cytoTIL15 cells, including MART1-specific TIL.

References

- Burga R. et al Genetically engineered tumor-specific TIL.
- BT/Box/2012/2878-325.
- MAB�塀/2013.
- □□□□2014.
- □□□□2015.
- □□□□2016.
- □□□□2018.

© 2022 Obsidian Therapeutics, Inc. 1030 Massachusetts Avenue, Cambridge, MA 02138

Acknowledgements: The authors wish to acknowledge the Cooperative Human Tissue Network (CHTN) for their supply of human tissue. Schematics were generated with biorender.io.