ABSTRACT 9515

OBX-115, an interleukin 2 (IL2)-sparing engineered tumor-infiltrating lymphocyte (TIL) cell therapy, in patients with immune checkpoint inhibitor (ICI)-resistant unresectable or metastatic melanoma

<u>Rodabe N Amaria, MD¹</u>; Jennifer L McQuade, MD¹; Michael A Davies, MD, PhD¹; Isabella C Glitza Oliva, MD, PhD¹; Steffy Jose, RN¹; Erik Cressman, MD, PhD²; Ashlynd L Clausell, MPH¹; Roland Bassett, MS³; Sapna Patel, MD¹; Adi Diab, MD¹; Hussein A. Tawbi, MD, PhD¹; Michael K Wong MD, PhD¹; Alexandra P Ikeguchi, MD¹; Cara Haymaker, PhD⁴; Seoung-Ae Lee, PhD⁴; Madan Jagasia, MD, MS⁵; Giridharan Ramsingh, MD⁵; Prakash Prabhakar, PhD⁵; Raina Duan, PhD⁵; Parameswaran Hari, MD⁵

1. Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA; 2. Department of Interventional Radiology, MD Anderson Cancer Center, Houston, TX, USA; 3. Department of Biostatistics, MD Anderson Cancer Center, Houston, TX, USA; 4. Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA; 5. Obsidian Therapeutics, Cambridge, MA, USA

PRESENTED BY: Rodabe N Amaria, The University of Texas MD Anderson Cancer Center, Houston, TX Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Learning Outcomes

2024 ASC

ANNUAL MEETING

#ASCO24

Patients with advanced (unresectable or metastatic) melanoma refractory to both anti–PD-1 and anti–CTLA-4 agents have a particularly poor prognosis and new treatments are needed

Lifileucel, a non-engineered tumor-infiltrating lymphocyte (TIL) cell therapy, was recently approved for patients with immune checkpoint inhibitor (ICI)-exposed advanced melanoma, but requires systemic high-dose IL2, which has well-described high-grade toxicity limiting patient eligibility, and had a treatment-related mortality rate of 7.5%

OBX-115 engineered TIL cell therapy does not require IL2 due to regulatable expression of membrane-bound IL15 (mbIL15), driven by the FDA-approved small-molecule drug acetazolamide (ACZ)

We describe a first-in-human dose-finding study of OBX-115 engineered TIL cell therapy demonstrating a **positively differentiated safety profile** with **sustained responses without IL2 administration**

ACZ, acetazolamide; CTLA-4, cytotoxic T-lymphocyte antigen-4; ICI, immune checkpoint inhibitor; IL2, interleukin 2; mblL15, membrane-bound interleukin 15; PD-1, programmed cell death protein-1; TIL, tumor-infiltrating lymphocyte.

Copies of these slides obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO® or the author of these slides.

PRESENTED BY: Rodabe N Amaria, The University of Texas MD Anderson Cancer Center, Houston, TX Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Background

- Patients with melanoma refractory to both anti–PD-1 and anti–CTLA-4 agents have a particularly poor prognosis
 - Subsequent chemotherapy or ICI retreatment results in 0%–10% ORR, 2–3 mo mPFS, and 7–8 mo mOS^{1–4}
 - Patients with prior BRAF tyrosine kinase inhibitor (TKI) exposure,^{5,6} anti–CTLA-4 exposure,⁵ and brain metastasis have limited benefit from current non-engineered TIL cell therapy^{7,8}
- Lifileucel, a non-engineered TIL cell therapy requiring systemic IL2, was recently approved⁹ in the post-anti–PD-1 setting
 - The pivotal cohort had an ORR of 31.5%,¹⁰ mPFS of 4.1 mo,⁸ and mOS of 12.7 mo at a median 8.4-mo follow up¹⁰
 - High-dose IL2 has well-described high-grade toxicity limiting patient eligibility, and the regimen had an overall treatment-related mortality rate of 7.5%⁹
- OBX-115 autologous engineered TIL cell therapy does not require co-administration of IL2 due to inducible and regulatable expression of mbIL15 using a carbonic anhydrase-2 drug-responsive domain (DRD), making its expression inducible with the FDA-approved small-molecule drug ACZ
 - mbIL15 provides cytokine support for TIL expansion and persistence
 - ACZ is well-tolerated and can be redosed to re-activate and re-expand persisting OBX-115 TIL¹¹
- We present data from a first-in-human phase 1 dose-finding study of OBX-115 in patients with ICI-resistant advanced melanoma*

ACZ, acetazolamide; CTLA-4, cytotoxic T-lymphocyte antigen-4; DRD, drug-responsive domain; ICI, immune checkpoint inhibitor; IL2, interleukin 2; mblL15, membrane-bound interleukin 15; mo, month; mOS, median overall survival; mPFS, median progression-free survival; ORR, objective response rate; PD-1, programmed cell death protein-1; TIL, tumor-infiltrating lymphocyte; TKI, tyrosine kinase inhibitor.

#ASCO24

^{1.} Vanderwalde AM et al. <u>Cancer Res 2022;82(12_supplement (Abstract CT013)</u>. 2. Pires da Silva I et al. <u>Lancet Oncol 2021;22(6);836-847</u>. 3. Ascierto PA et al. <u>J Clin Oncol 2023;41(15);2724-2735</u>. 4. Kirchberger et al. <u>Eur J Cancer 2016</u>; 65. 5. Forget M et al. <u>Clin Cancer Res 2018</u>; 24(18): 4416. 6. Seitter SJ et al. <u>Clin Cancer Res 2021;75289–98</u>. 7. Mehta GU et al. <u>J Immunother</u>. 2018; 41(5): 241–247. 8. Chesney JA et al. <u>J Immunother Cancer 2022</u>;10:e005755. 9. <u>AMTAGVI Prescribing Information</u> (n=73). Accessed April 1, 2024. 10. BLA Clinical Review and Evaluation BLA 125773: <u>Approval History, Letters, Reviews, and Related Documents – AMTAGVI</u>. Accessed April 29, 2024. 11. Burga R et al, SITC 2023 (Abstract 348). *Data cutoff April 4, 2024; 10 patients who had started study treatment by December 31, 2023, are included.

First-in-human Study Design (NCT05470283)

Key Eligibility Criteria

- Advanced melanoma relapsed and/or refractory to ICI therapy
- ≥1 lesion suitable for tumor tissue procurement (TTP) for manufacturing and ≥1 remaining lesion amenable to RECIST v1.1 response assessment
- Protocol-defined high-risk patients (e.g. mucosal and uveal or genomically equivalent mutations) may be enrolled after initial safety established

#ASCO24

Primary Endpoints

- Safety, tolerability, and identification of recommended doses of the OBX-115 regimen: all treated patients
 - Incidence and severity of adverse events (AEs), serious AEs (SAEs), and dose-limiting toxicities (DLTs)

Key Secondary Endpoints

- Investigator-assessed ORR, DOR, and PFS: by dose level for full efficacy set
 - Protocol-defined high-risk patients assessed separately

ACZ, acetazolamide; AE, adverse event; DLT, dose-limiting toxicity; DOR, duration of response; ICI, immune checkpoint inhibitor; ORR, objective response rate; PFS, progression-free survival; RECIST, Response Evaluation Criteria in Solid Tumors; SAE, serious adverse event: TTP, tumor tissue procurement

Data cutoff: April 4, 2024 (10 patients who had started study treatment by December 31, 2023 are included). *Standard- or low-dose lymphodepletion options. ⁺Or until absolute lymphocyte count ≥5000 cells/µL, whichever is earlier. ⁺Patients may receive additional ACZ dosing at Week 6.

All Patients Had ICI-resistant Disease

Baseline Patient and Disease Characteristics	All Patients (N=10)	Treatment Characteristics	All Patients (N=10)
Age, median (range), years	48.5 (28–74)	Lines of prior systemic therapy, median (range)	3.5 (1–6)
Sex, n (%) Female	7 (70.0)	Lines of prior ICI therapy	2.0 (1–3)
Mutation status, n (%) BRAF-mutant NRAS-mutant GNA11-mutant (rare uveal-equivalent subtype)*	3 (30.0) 2 (20.0) 1 (10.0)	Prior adjuvant therapy, h (%) Anti–CTLA-4 Anti–PD-1 Chemotherapy	5 (50.0) 1 (10.0) 3 (30.0) 1 (10.0)
Target lesion SOD, median (range), mm	39.9 (11.7–82.8)	Prior systemic therapy, n (%) Anti–PD-1	10 (100)
Brain lesions with prior treatment, n (%)	2 (20.0)	Anti-CTLA-4	10 (100)
Target lesion site(s), n (%) Liver Lymph node	3 (30.0) 3 (30.0)	Anti–PD-1 + anti–CTLA-4 combination Anti–PD-1 + anti-LAG3 combination BRAF ± MEK TKI	9 (90.0) 2 (20.0) 2 (20.0)
Other [†]	6 (60.0)	Primary-resistant (SITC criteria), n (%)	
ECOG PS, n (%)	7 (70.0)	Anti–PD-1 ¹ Anti–PD-1 + anti–CTLA-4 or anti-LAG3 combination ²	8 (80.0) 8 (80.0)
1 LDH >ULN, n (%)	3 (30.0) 5 (50.0)	Systemic bridging therapy, n (%) Chemotherapy	1 (10.0) 1 (10.0)

#ASCO24

1. Kluger HM et al. J Immunother Cancer 2020;8(1). 2. Kluger H et al. J Immunother Cancer 2023;11(3). *Efficacy assessed as a separate cohort per protocol. †"Other" includes abdominal wall (n=2) and pancreas, flank, retroperitoneum, sacrum, thigh muscle, and lateral hemithorax (n=1 each).

CTLA-4, cytotoxic T-lymphocyte antigen-4; ECOG PS, Eastern Cooperative Oncology Group performance status; ICI, immune checkpoint inhibitor; LAG3, lymphocyte activation gene 3; LDH, lactate dehydrogenase; PD-1, programmed cell death protein-1; SITC, Society for Immunotherapy of Cancer; SOD, sum of diameters; TKI, tyrosine kinase inhibitor; ULN, upper limit of normal.

Patient 1 Key Learnings Informed Subsequent Dose-level Schema

Patient 1 30,000-ALC/µL 20,000 10,000-D14 Lymphodepletion D-9 Range of D5 normal ALC -5 10 -10 15 Days From OBX-115 Infusion

- OBX-115: 150 × 10⁹ cells
- ACZ: 500 mg/day (5 doses starting Day -1)
- Peak ALC: 30,400 cells/µL (Day 8)
- No DLTs
- PR achieved by Week 6, deepened to CR by Week 12

	Dose Level	Fresh / Cryo	OBX-115 Dose Upper Cap (cells × 10º)	ACZ Dose (mg / day)	Planned ACZ Duration (days)	
Dose de-escalation based on Patient 1	1	Fresh	150	500	365	
OBX-115 cell expansion	Dose de-escalation implemented					
	-1	Fresh	30	125	7	
	2	Fresh	100	125	7	
	2	Cryo	100	125	10	

Median (range) manufactured OBX-115 dose: $100 (9-190) \times 10^9$ cells

1. Dudley ME et al. J Clin Oncol 2005 Apr 1;23(10)2346-57. 2. Dudley ME et al. J Immunother 2002 May-Jun;25(3):243-51. 3. Fehse B et al. Ther Methods Clin Dev 2020 Jan 15;16:172-178,

ACZ, acetazolamide; ALC, absolute lymphocyte count; CR, complete response; Cryo, cryopreserved; D, day; DLT, dose-limiting toxicity: PR. partial response

PRESENTED BY: Rodabe N Amaria, The University of Texas MD Anderson Cancer Center, Houston, TX Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

OBX-115 Has a Positively Differentiated Safety Profile

No treatment- or disease-related mortality at median study follow-up of ~30 weeks No ICU care needed in any patient

At a median study follow-up of 29.5 weeks (range, 13.0–69.3):

- ✓ No DLTs reported at any dose level
- No confirmed CRS, ICANS, or capillary leak syndrome
- No AEs related to outpatient ACZ redosing at Week 6 (n=7)
- ✓ No patient discontinued study due to AEs
- No Grade 4+ nonhematologic TEAEs (Grade 3 events, n=3 in 2 patients)*

	All Patients (N=10)		
Nonhematologic TEAE,* n (%)	All Grades	Grade 3	Grade 4+
Increased alanine aminotransferase	4 (40.0)	1 (10.0)	0
Abdominal pain [†]	1 (10.0)	1 (10.0)	0
Syncope	1 (10.0)	1 (10.0)	0

Hematologic AEs were consistent with known lymphodepletion safety profile

- Eight patients experienced rash / pruritus (all Grade 1–2)
- Uveitis / iritis (all Grade 1–2) in 4 patients, 1 of whom reported optic neuritis (Grade 3) that has resolved

*Grade ≥3 events reported within 30 days after OBX-115 infusion. [†]Included increased alanine aminotransferase and required prolonged hospitalization (only patient with TEAE resulting in prolonged hospitalization). ACZ, acetazolamide; AE, adverse event; DLT, dose-limiting toxicity; CRS, cytokine release syndrome; ICANS, immune effector cell-associated neurotoxicity syndrome; ICU, intensive care unit; TEAE, treatment-emergent adverse event.

OBX-115: Promising Efficacy Profile Without IL2 Administration

	Efficacy Cohort (n=9)
Objective response rate, n (%)	4 (44.4)
Complete response	2 (22.2)
Partial response	2 (22.2)
Stable disease ≥12 weeks	5 (55.6)
Progressive disease	0
Disease control rate,* n (%)	9 (100)
Progression-free survival at 24 weeks	75%

- Per-protocol efficacy analysis set (n=9)
 - 44.4% ORR, including 2 CRs
- Per-protocol high-risk cohort (n=1, GNA11-mutated rare uveal-equivalent subtype)
 - Best response of progressive disease

*Defined as stable disease (or better) for ≥12 weeks post-infusion. CR, complete response; IL2, interleukin 2; ORR, objective response rate.

#ASCO24

PRESENTED BY: Rodabe N Amaria, The University of Texas MD Anderson Cancer Center, Houston, TX Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

All Patients Experienced Tumor Burden Reduction

*Patient received cryopreserved OBX-115. † Patients with isolated brain progression did not receive systemic treatment post-progression. **+" indicates no progression at latest follow-up. CR, complete response; ORR, objective response rate; SOD, sum of diameters; TKI, tyrosine kinase inhibitor; wks, weeks.

#ASCO24

PRESENTED BY: Rodabe N Amaria, The University of Texas MD Anderson Cancer Center, Houston, TX

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

OBX-115 Has Positively Differentiated Phenotypic Attributes and Promotes Expansion of Endogenous Immune Cells*

OBX-115 was successfully manufactured from **core needle biopsy** (n=5) and surgical excision (n=5) of tumor tissue

* Translational data available from first 6 infused patients (1–6).

#ASCO24

1. Double-negativity associated with response (Krishna S et al. Science 2020 Dec 11;370(6522):1328-1334). 2. PD-1 expression is generally higher in non-engineered TIL (~20%-80%) (Simpson-Abelson M et al. ESMO Virtual Congress 2020 (Abstract 1035P);

Cubas R et al. Tandem Meetings of ASTCT & CIBMTR 2022 (Abstract 270). 3. Burga R et al, AACR 2024 (Abstract LB072)

mblL15, membrane-bound interleukin 15; NK, natural killer; PD-1, programmed cell death protein-1; TIL, tumor-infiltrating lymphocytes.

Conclusions

- OBX-115 is a highly differentiated TIL cell therapy product with optimized characteristics for response and persistence, which can be manufactured using tumor tissue obtained via core needle biopsy
 - ACZ-driven regulatable mblL15 expression enables elimination of IL2 from the regimen
- In this Phase 1 first-in-human study exploring optimal dosing of OBX-115 + ACZ in this particularly **high unmet need population**, the OBX-115 regimen resulted in:
 - Positively differentiated safety from IL2-dependent non-engineered
 TIL cell therapy
 - Promising efficacy profile without IL2 administration, including a 44% ORR across all dose-level cohorts (n=9)
 - 50% ORR in patients receiving OBX-115 dose >30 × 10^9 cells
 - 100% disease control rate
 - Tumor burden reduction in all patients
 - 75% PFS at 24 weeks

#ASCO24

ANNUAI MEETI

ACZ, acetazolamide; IL2, interleukin 2; PFS, progression-free survival; ORR, objective response rate; OS, overall survival; TIL, tumor-infiltrating lymphocyte; TKI, tyrosine kinase inhibitor

Planned regimen optimization is **ongoing in a Phase 1/2 multicenter study**, currently enrolling patients with advanced melanoma and metastatic non-small cell lung cancer (NCT06060613 [Agni-01]; **Poster TPS9599**)

> Copies of these slides obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO® or the author of these slides.

PRESENTED BY: Rodabe N Amaria, The University of Texas MD Anderson Cancer Center, Houston, TX Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.