

OBX-115 engineered tumor-infiltrating lymphocyte (TIL) cell therapy with regulatable membrane-bound IL15 (mbIL15) in patients with immune checkpoint inhibitor (ICI)-resistant advanced melanoma

Jason A Chesney,¹ Gino K In,² Alexander N Shoushtari,³ Justin T Moyers,⁴ Yazan Samhouri,⁵ Tirrell T Johnson,⁶ Rodabe N Amaria,⁷ Giridharan Ramsingh,⁸ Camille Renard,⁸ Raina Duan,⁸ Lauren Mclaughlin,⁸ Allison Betof Warner⁹

1. UofL Health – Brown Cancer Center, Louisville, KY, USA; 2. Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; 3. Memorial Sloan Kettering Cancer Center, New York, NY, USA; 4. The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, CA, USA; 5. Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA; 6. Orlando Health Cancer Institute, Orlando, FL, USA; 7. MD Anderson Cancer Center, Houston, TX, USA; 8. Obsidian Therapeutics, Cambridge, MA, USA; 9. Stanford University School of Medicine, Stanford, CA, USA

Jason A Chesney, MD, PhD

Key Takeaway Points/Conclusions

OBX-115 TIL are engineered to express mbIL15 regulated by acetazolamide via a drug-responsive domain, abrogating the need for IL2 OBX-115 is compatible with low-dose lymphodepletion and has a positively differentiated safety profile At RP2D, OBX-115 can induce deep and durable responses in patients with ICI-resistant advanced melanoma

ICI, immune checkpoint inhibitors; IL2, interleukin 2; mbIL15, membrane-bound interleukin 15; RP2D, recommended phase 2 dose; TIL, tumor-infiltrating lymphocytes.

Background

Non-engineered TIL cell therapy is approved in the unmet-need post-ICI advanced melanoma setting,¹ but requires high-dose IL2 and standard-dose lymphodepletion

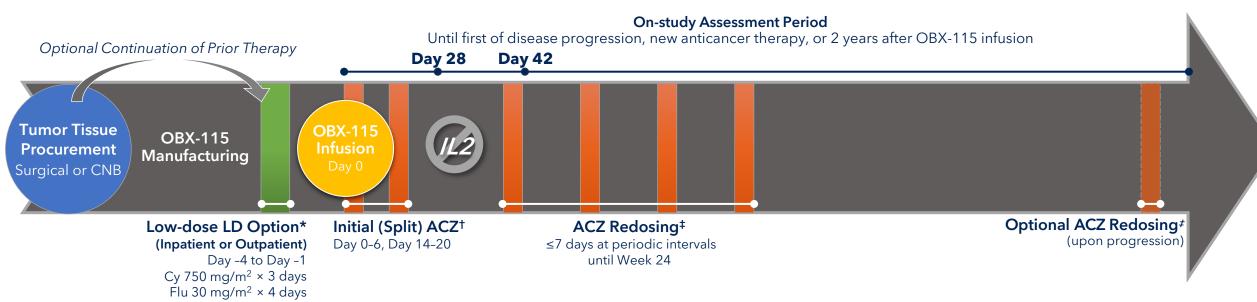
- High-dose IL2 has well-described toxicity limiting patient eligibility
- The regimen is associated with a treatment-related mortality rate of 7.5%¹

OBX-115 TIL are engineered to express regulatable mbIL15 to support TIL expansion and persistence, abrogating the need for IL2

- mbIL15 expression is regulated via a drug-responsive domain (DRD) using the FDA-approved small-molecule drug acetazolamide (ACZ)
- ACZ is well-tolerated and can be redosed to re-activate and re-expand persistent OBX-115 TIL²

Single-center phase 1 data of predominantly fresh OBX-115 in patients with ICI-resistant advanced melanoma demonstrated differentiated early safety and promising efficacy (NCT05470283)³

We report the initial safety and efficacy data from the multicenter phase 1/2 Agni-01 trial evaluating cryopreserved OBX-115 in patients with ICI-resistant advanced melanoma


^{1.} AMTAGVI Prescribing Information (n=73). Accessed April 1, 2025. 2. Burga R et al, *Molecular Therapy* 2025. DOI: <u>10.1016/j.ymthe.2025.04.031</u>. 3. Amaria RN et al, ASCO 2024 (Abstract 9515). ACZ, acetazolamide; DRD, drug-responsive domain; ICI, immune checkpoint inhibitor; IL2, interleukin 2; mblL15, membrane-bound interleukin 15; TIL, tumor-infiltrating lymphocytes.

Agni-01 Study Design (NCT06060613)

Key Eligibility Criteria

- Advanced melanoma relapsed and/or refractory to ICI therapy
- No upper age limit

2025 **ASCC**

ANNUAL MEETING

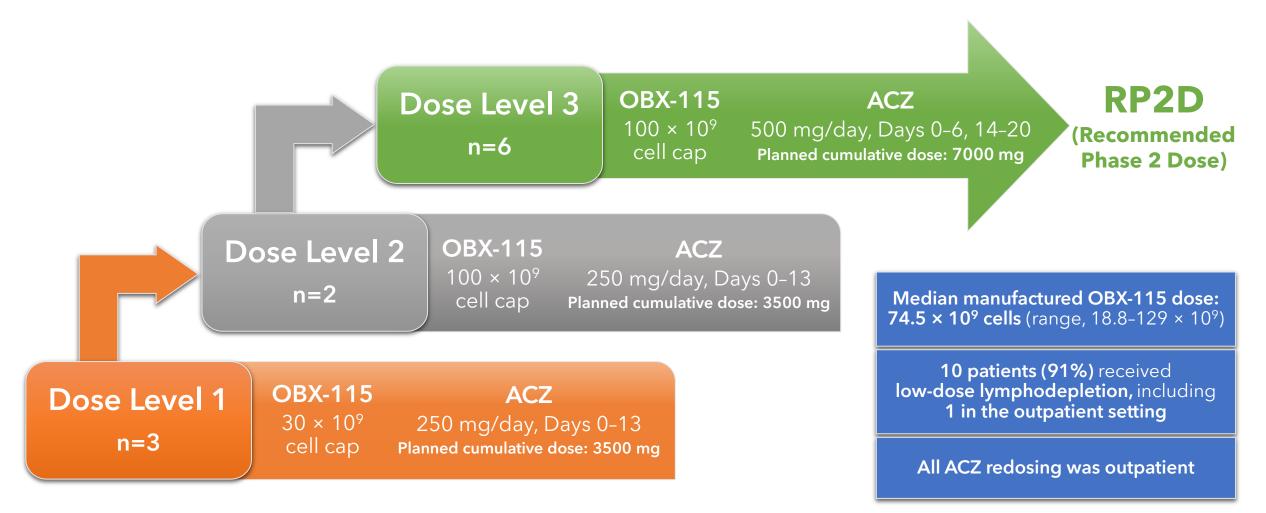
- \geq 1 lesion suitable for tumor tissue procurement (TTP) for manufacturing and ≥1 remaining lesion amenable to RECIST v1.1 response assessment
- Tumor tissue procurement by core needle biopsy (CNB) feasible

Primary Endpoints

- Safety, tolerability, and identification of recommended dose of the OBX-115 regimen
 - Incidence and severity of AEs, SAEs, and DLTs

Key Secondary Endpoints

Investigator-assessed ORR, DOR, PFS, and OS


*May be administered in the inpatient or outpatient setting, per institutional standard. Low-dose LD administered to all but 1 patient, who received standard-dose LD (7-day regimen: Cy 60 mg/kg × 2 days, Flu 25 mg/m² × 5 days). †ACZ is administered at cohort-defined doses once daily starting day of OBX-115 infusion for ≤14 days; at Dose Level 3, initial ACZ dosing was split into two ≤7-day periods within 28 days (Day 0-6 or until ALC ≥5000 cells/µL whichever is earlier, and restarting between Day 14 and 21). [‡]Additional ACZ dosing for ≤7 days at periodic intervals until Week 24, and upon progression when new anticancer therapy is not immediately warranted.

ACZ, acetazolamide; AE, adverse event; CNB, core needle biopsy; Cy, cyclophosphamide; DLT, dose-limiting toxicity; DOR, duration of response; Flu, fludarabine; ICI, immune checkpoint inhibitor; LD, lymphodepletion; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; RECIST, Response Evaluation Criteria in Solid Tumors; SAE, serious adverse event; TTP, tumor tissue procurement

Protocol-defined Dose-escalation Strategy

ACZ, acetazolamide; RP2D, recommended phase 2 dose.

#ASCO25

2025 ASCO

ANNUAL MEETING

PRESENTED BY: JASON A Chesney, MD, PhD

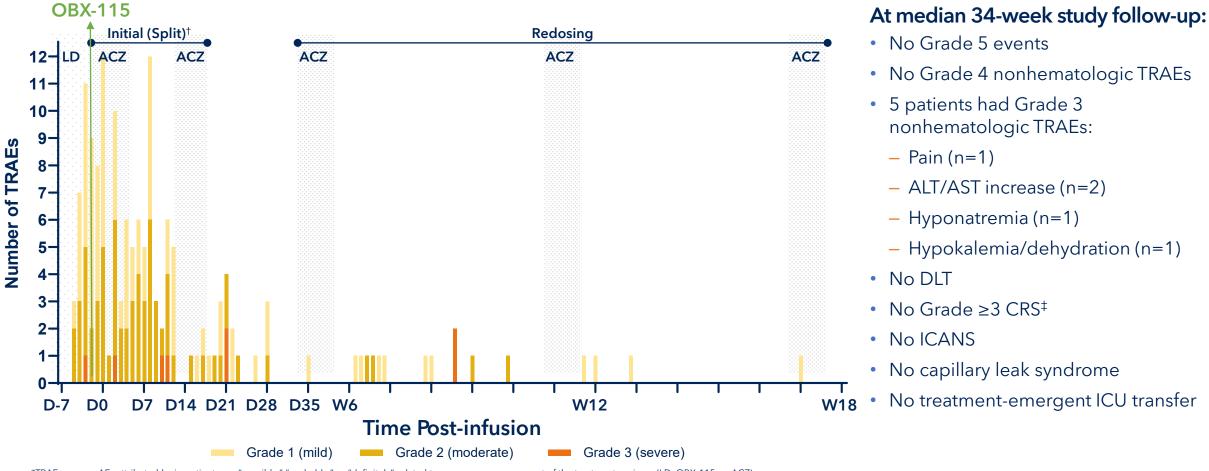
Patients Had Advanced ICI-resistant Disease

Baseline Patient and Disease Characteristics	All Patients (N=11)
Age, median (range), years	52 (27-78)
Sex, n (%) Female	4 (36)
Mutation status, n (%) BRAF V600-mutant NRAS-mutant GNA11-mutant (non-uveal GNA11 subtype)	4 (36) 3 (27) 1 (9)
Target lesion SOD, mean (SD), mm	94.8 (57)
Brain metastases, n (%)	3 (27)
Target lesion site(s), n (%) Skin / subcutaneous Lymph node Visceral Soft tissue Other*	3 (27) 8 (73) 5 (45) 2 (18) 2 (18)
ECOG PS, n (%) 0 1	8 (73) 3 (27)
LDH >ULN, n (%)	4 (36)

Treatment Characteristics	All Patients (N=11)
Lines of prior systemic therapy, median (range) Lines of prior ICI therapy	3 (1–5) 2 (1–5)
Prior (neo)adjuvant therapy, n (%) Anti-PD-1 BRAF± MEK TKI	5 (45) 1 (9)
Prior systemic therapy in metastatic setting, n (%) Anti-PD-1 Anti-CTLA-4 Anti-PD-1 + anti-CTLA-4 combination Anti-PD-1 + anti-LAG3 combination BRAF ± MEK TKI	11 (100) 9 (82) 9 (82) 6 (55) 5 (45)
Primary-resistant (SITC criteria), n (%) Anti-PD-1 ¹ Anti-PD-1 + anti-CTLA-4 or anti-LAG3 combination ²	9 (82) 8 (73)

Data cutoff March 26, 2025.

1. Kluger HM et al. J İmmunother Cancer 2020;8(1). 2. Kluger H et al. J Immunother Cancer 2023;11(3). *"Other" includes 1 patient with pelvic mass and 1 patient with abdominal wall and pleural wall. CTLA-4, cytotoxic T-lymphocyte antigen-4; ECOG PS, Eastern Cooperative Oncology Group performance status; ICI, immune checkpoint inhibitor; LAG3, lymphocyte activation gene 3; LDH, lactate dehydrogenase; PD-1, programmed cell death protein-1; SITC, Society for Immunotherapy of Cancer; SOD, sum of diameters; TKI, tyrosine kinase inhibitor; ULN, upper limit of normal.



2025 ASCO

ANNUAL MEETING

#ASCO25

Agni-01 Safety All-grade Nonhematologic TRAEs*

*TRAEs are any AEs attributed by investigator as "possibly," "probably," or "definitely" related to one or more component of the treatment regimen (LD, OBX-115, or ACZ).. [†]ACZ dosing varied by dose level; DL3 / RP2D dosing shown.

PRESENTED BY: Jason A Chesney, MD, PhD

[‡]Grade 2 CŘS (n=2).

2025 ASCC

ANNUAL MEETING

ACZ, acetazolamide; AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CRS, cytokine release syndrome; D, Day; DLT, dose-limiting toxicity; ICANS, immune effector cell-associated neurotoxicity syndrome; ICU, intensive care unit; LD, lymphodepletion; TRAE, treatment-related adverse event; W, Week.

#ASCO25

AMERICAN SOCIETY O CLINICAL ONCOLOGY KNOWLEDGE CONQUERS CANCER

Responses in Anti-PD-1-resistant Advanced Melanoma

	All Patients DL1, DL2, DL3 (N=11)	DL3 / RP2D (N=6)
Objective response rate, n (%)	4 (36)	4 (67)
Complete response	1 (9)	1 (17)
Partial response	3 (27)	3 (50)
Stable disease ≥12 weeks	5 (46)	2 (33)
Progressive disease	2 (18)	0
Disease control rate,* n (%)	9 (82)	6 (100)
Duration of response, months (median [95% CI])	NR (2.6-NR)	NR (2.6-NR)

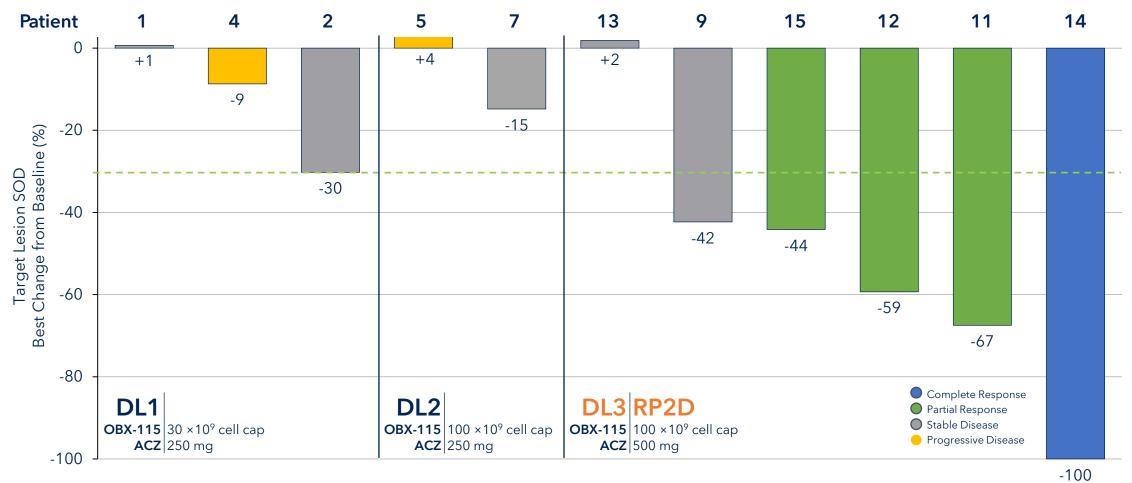
Dose Level 3 / RP2D

ORR 67%

- 1 confirmed CR
- DCR 100%

Dose Level 3 / RP2D is being explored further in Phase 2

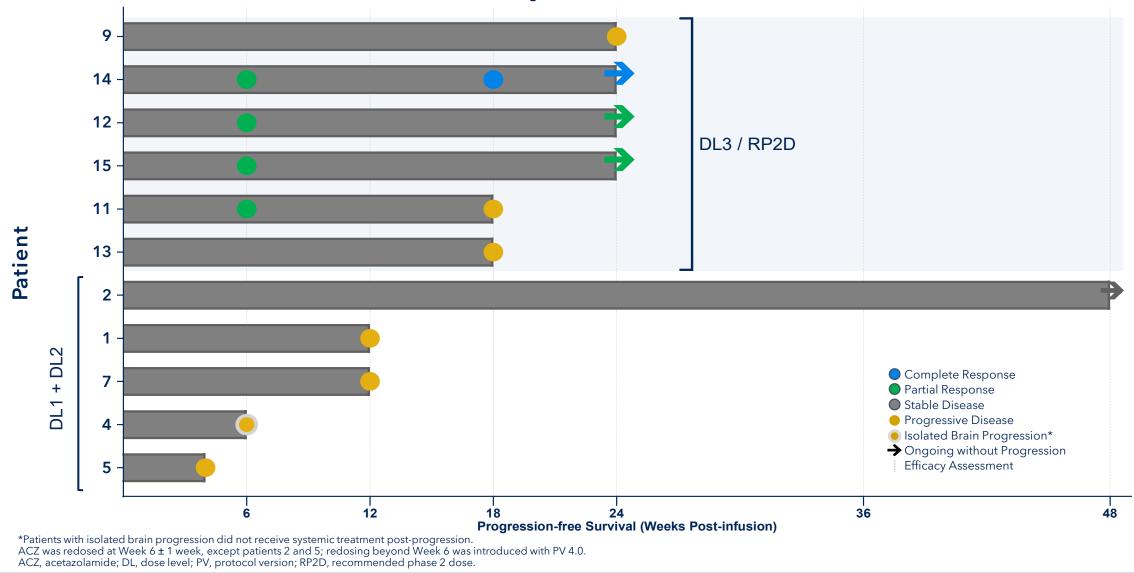
*Defined as stable disease (or better) for \geq 12 weeks post-infusion.


CR, complete response; DCR, disease control rate; DL, dose level; NR, not reached; ORR, objective response rate; PD-1, programmed cell death protein-1; RP2D, recommended phase 2 dose.

Tumor Burden Reduction in 73% of Patients

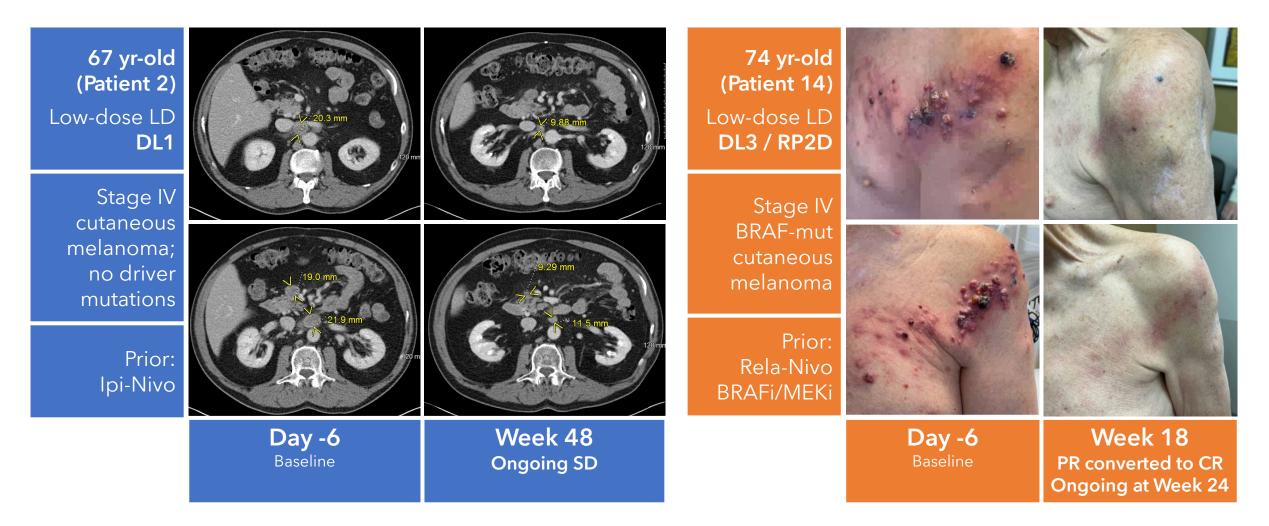
83% of Patients Receiving DL3 / RP2D Experienced Tumor Burden Reduction

ACZ, acetazolamide; DL, dose level; RP2D, recommended phase 2 dose; SOD, sum of diameters.


2025 **ASCO**

ANNUAL MEETING

Onset and Duration of Responses with DL3 / RP2D


#ASCO25 PRESENTED BY: Jason A Chesney, MD, PhD Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

2025 ASCO

ANNUAL MEETING

Deepening and Sustained Reduction in Lesions

Patient 2 Week 48 visit occurred on March 28, 2025 (2 days after data cut). CR, complete response; DL, dose level; LD, lymphodepletion; PR, partial response; RP2D, recommended phase 2 dose.

Conclusions

#ASCO25

- ACZ-driven regulatable mbIL15 expression on OBX-115 TIL enables a potentially safer alternative to non-engineered TIL cell therapy and may broaden the eligible patient population by:
 - Elimination of IL2 after cell infusion
 - Enabling a low-dose lymphodepletion regimen
- In this particularly high unmet-need population of patients with ICI-resistant melanoma, the OBX-115 regimen resulted in a promising efficacy profile, including:
 - 67% ORR (1 CR) in 6 patients receiving DL3 / RP2D
 - Median DOR not reached (median 25 weeks follow-up since initial response)
- This ongoing Phase 1/2 multicenter study is currently enrolling patients with advanced melanoma and metastatic non-small cell lung cancer (NCT06060613)

See Abstract 9519: Translational data from the single-center first-in-human study

ACZ, acetazolamide; CR, complete response; DL, dose level; DOR, duration of response; IL2, interleukin 2; mbIL15, membrane-bound interleukin 15; ORR, objective response rate; RP2D, recommended phase 2 dose; TIL, tumor-infiltrating lymphocyte.

KNOWLEDGE CONQUERS CANCER

PRESENTED BY: Jason A Chesney, MD, PhD Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

Key Takeaway Points/Conclusions

OBX-115 TIL are engineered to express mbIL15 regulated by acetazolamide via a drug-responsive domain, abrogating the need for IL2 OBX-115 is compatible with low-dose lymphodepletion and has a positively differentiated safety profile At RP2D, OBX-115 can induce deep and durable responses in patients with ICI-resistant advanced melanoma

ICI, immune checkpoint inhibitors; IL2, interleukin 2; mbIL15, membrane-bound interleukin 15; RP2D, recommended phase 2 dose; TIL, tumor-infiltrating lymphocytes.

